与普通高度住宅相比,超高层住宅视线无遮挡,看到的景观效果更好,而且高处的湿度小,不易潮湿,远离汽车尾气尘埃,空气质量优良,同时通风条件更好,受干扰程度小。超高层住宅土地利用率高,能够承载更多的居家。
★超高层建筑由于其体型巨大,功能复杂,容纳人员众多,投资十分庞大。
超高层楼宇无异于一条竖立起来的街道,存在着安全、内部交通、环境、能源消耗等多种难以妥善解决的问题,越是向高处发展,安全性、耐久性及适用舒适等问题就愈多,对结构工程师和建筑师、机电工程师都提出新课题。
相对高层住宅而言,超高层住宅设计复杂,对项目设计及管理水平要求严格,因此设计、工程顾问及监理费用可能增加;超高建筑物中每隔一定距离须加设避难层,以可使用面积计,成本会较高;
★超高层建筑的建设和维护要耗费大量财富。
成本、能源的角度审视超高层建筑。超高层建筑在施工设计上的要求更加严格,尤其是对消防、防震、防风的指标要求很高,对例如玻璃等建筑材料的选择格外严格,同时由于高处的湿度、风力影响,对建筑结构构造方面也有特殊要求,由于这些特殊要求和设计,使整个建筑成本约增加1/4左右。
因其体量高大、荷载强度高、地基处理及建筑成本高、电梯垂直爬升的耗能及运转成本也大。还有的专家指出,超高层建筑的结构寿命一般在100年以上,而其内部的许多设备系统寿命仅为十几年,维修、更换的难度很大,成本过高。有学者还指出,因建筑本身也是一种消耗性产品,日子长了会有磨损,钢筋混凝土也会逐步丧失其强度,其维修、保养将会是一笔不小的开销。
★超高层建筑设计、施工和管理维护诸多方面与众不同之处,点点滴滴都要认真对待。
超高层建筑绝不是普通建筑的拉伸或简单叠加。在一般建筑物中的一般问题,到了超高层建筑中都成了特殊问题,需要特别关切和处理。
▲侧向风影响
高层、超高层建筑要承受侧向的风力,这一点是勿庸置疑的。但是,对建筑物影响多大?一般说,在正常的风压状态下,距地面高度为10m处,如风速为5m/s,那么在90m高空,风速可达到15m/s。若高达300-400m,风力将更加强大,即风速达到30m/s以上时,摩天大楼产生的晃动将十分剧烈。对大楼的这种晃动,首先要考虑它对电梯的影响,电梯被视为超高层建筑的“生命线”。当电梯高速运行的同时,如果大楼的晃动超过一定尺寸,电梯的钢缆就会因时紧时松的受力不均受到伤害,并造成危险。
▲烟囱效应
冬天,在气温较低的情况下,会由于低层(特别是一层大堂)和地下室的冷空气窜入电梯井,经烟囱效应形成强大气流,造成电梯关不上门。而且会将底层的一些气味带到高层,如厨房的气味、油烟味等,此时如在底层或地下室有电焊操作或燃气泄漏就可能将火源随气流带到高层,极端危险。同时,由于电梯轿厢与井壁间的缝隙很小,在电梯移动时,气流的摩擦会产生啸叫,这种现象在金茂大厦也有出现。据对于超高层建筑设计极有经验的美国SOM设计事务所说,这是个国际性难题,目前尚未找到很好的解决办法。
▲消防安全问题
超高层建筑存在诸多火灾事故隐患。建筑装修中使用了大量可燃性材料,建筑内部还分布着大量电线电缆,一旦火灾形成,火势会非常迅猛,电梯井和管道井就像一个个大烟囱,火借风势,蔓延很快。此外,超高层建筑中普遍使用的钢结构体系耐火性较差,在700℃度的高温下,其承重性能就会大大降低,导致楼体坍塌。同时,超高层建筑内部人员疏散也会比较困难。
▲其他管理维护问题
一些超高层大楼都曾出现过断电、跑水等事故。从管理上看除了做好预案,防止事故发生和做好备用系统以外,一旦事故出现,如何抢救,是否有一位掌握全局、了解本系统一切细枝末节的人十分重要。上海金茂大厦的管理层就曾对没有一位掌握该建筑14000多个阀门的人感到十分遗憾。擦玻璃也成了管理这些庞然大物的一个麻烦。金茂大厦的幕墙有,1O.8万平方米,据说两架擦窗机连续工作,一年才能把所有的玻璃擦一遍,而且,由于建筑外形凹凸起伏太大,檐部又挑出很多,有的地方达3m以上,擦玻璃相当困难。
●结论:
虽然超高层住宅建筑存在着一些明显的缺陷,但是通过国内外近些年对超高层建筑的开发研究实践,在建设开发上,技术条件已经具备。故而对于超高层住宅的开发更多需要思考的是技术难点的优化解决方案及市场导向的相关方面。
◆部分开发环节技术难点的研究与思考
▲成本核算
相对高层住宅而言,超高层住宅设计复杂,对项目设计及管理水平要求严格,因此设计、工程顾问及监理费用可能增加;超高建筑物中每隔一定距离须加设避难层,以可使用面积计,成本会较高;配套设施建设费或会因建筑物层数不同而收费基准有异。
超高层住宅造价增加主要体现在以下四个方面:项目整体设计与建筑标准;基础及结构;屋面及外立面;机电。
根据表示,假设开发商开发一座30层的毛坯房一般造价约2,200元/平方米,如设计转为50层超高建筑,经过下列简单测算,其额外造价约:330-545元/平方米,造价增幅约为15%-24%。
●结论:
成本的增加势必使得开发物业销售价格上扬,同时也使得项目开发获取得利润率降低,所以,在开发成本和销售价格不可控的情况下,缩短超高层住宅物业的开发销售周期是保证利润率的一个关键。
▲结构系统
对于结构设计来讲,按照建筑使用功能的要求、建筑高度的不同以及拟建场地的抗震设防烈度以经济、合理、安全、可靠的设计原则,选择相应的结构体系,一般分为六大类:框架结构体系、剪力墙结构体系、框架—剪力墙结构体系、框—筒结构体系、筒中筒结构体系、束筒结构体系。
七十年代以前,我国的高层建筑多采用钢筋混凝土框架结构、框架—剪力墙结构和剪力墙结构。
进入八十年代,由于建筑功能以及高度和层数等要求,筒中筒结构、筒体结构、底部大空间的框支剪力墙结构以及大底盘多塔楼结构在工程中逐渐采用。
九十年代以来,除上述结构体系得到广泛应用外,多筒体结构、带加强层的框架—筒体结构、连体结构、巨型结构、悬挑结构、错层结构等也逐渐在工程中采用。
为适应结构体系的多样化,结构材料向多样性发展,八十年代以前高层建筑主要为钢筋混凝土结构。进入九十年代后,由于我国钢材产量的增加,钢结构、钢—混凝土混合结构逐渐采用。如金茂大厦、地王大厦都是钢—混凝土混合结构。此外,型钢混凝土结构和钢管混凝土结构在高层建筑中也正在得到广泛应用。高层建筑结构采用的混凝土强度等级不断提高,从C30逐步向C60及更高的等级发展。预应力混凝土结构在高层建筑的梁、板结构中广泛应用。钢材的强度等级也不断提高。
高层和超高层建筑在结构设计中除采用钢筋混凝土结构(代号RC)外,还采用型钢混凝土结构(代号SRC),钢管混凝土结构(代号CFS)和全钢结构(代号S或SS)。
建筑高度100m,柱网为8.4m,抗震设防烈度为6度,采用框架—剪力墙或框—筒结构体系较为经济合理,这种结构体系的剪力墙或筒体是很好的抗侧力构件,常常承担了大部分的风载和地震荷载产生的水平侧力,总体刚度大,侧移小,且满足玻璃幕墙的外装饰要求。
超高层建筑的楼板和屋盖具有很大的平面刚度,是竖向钢柱与剪力墙或筒体的平面抗侧力构件,同时使钢柱与各竖向构件(剪力墙或筒体)起到变形协调作用。
一般钢结构建筑物的楼板和屋盖,都采用轧制的压型钢板加现浇钢筋混凝土(简称钢承
混凝土)楼板和屋盖,厚度一般不小于150mm.目前在设计钢承混凝土楼板和屋盖时没有考虑钢承混凝土楼板和屋盖与钢梁共同作用。主要是对于板底呈波形的计算原理不甚了解或认为计算繁琐,就按平板计算,这样既不安全又增加了钢梁的用钢量。
如果采用钢梁与钢承混凝土楼板共同作用,简称MST组合梁,只要计算正确,配筋合理,
栓钉可靠,则可以节约楼层和屋盖钢梁的用钢量20%左右,而且不需对钢梁进行稳定验算。
●结论:
由于超高层住宅建筑结构的特殊性,建筑内部的梁柱将会不可避免的存在,在结构设计中一方面考虑异型柱的使用,另一方面在户型设计中要充分全面考虑梁柱的影响、规避及利用
▲垂直交通设计
高层建筑与其它建筑之间的最大区别,就在于它有一个垂直交通和管道设备集中在一起的、在结构体系中又起着重要作用的“核”(Core)。而这个“核”也恰恰在形态构成上举足轻重,决定着高层建筑的空间构成模式。
随着高层建筑建设的发展、高度的增加和技术的进步,在高层建筑的设计过程中,逐渐演化出了中央核心筒式的“内核”空间构成模式。在建筑处理上,为了争取尽量宽敞的使用空间,希望将电梯、楼梯、设备用房及卫生间、茶炉间等服务用房向平面的中央集中,使功能空间占据最佳的采光位置,力求视线良好、交通便捷。在结构方面,随着筒体结构概念的出现、高度的增加,也希望能有一个刚度更强的筒来承受剪力和抗扭。在建筑的中央部分,有意识地利用那些功能较为固定的服务用房的围护结构,形成中央核心筒,而筒体处于几何位置中心,还可以使建筑的质量重心、刚度中心和型体核心三心重合,更加有利于结构受力和抗震。
这种“内核”空间构成模式,经过长期的实践检验,以其结构合理、使用方便和造价相对低廉的优势,很快便成为高层建筑中最为流行的空间布局形式。当然,除了中央核心筒式的“内核”布置方式之外,高层建筑还有其它的布局方式,如“外核式布局”和“多核式布局”等等。尽管中央核心筒式布局的筒体周围的房间需要人工采光和机械通风,总会多少给人带来不适感,但是一直以前,“内核”式的布局形式一直占据着主导地位。“内核”式的布局形式及其变种不仅在数量上占有绝对优势,而且,大多数著名的超高层写字楼建筑也都采用这种形式。但是作为超高层住宅建筑,这种内核式的布局存在着诸多不便利之处。
随着时代的发展、技术的进步,人们对建筑需求的变化和设计侧重点的不同,以中央核心筒为主流的高层建筑“内核”空间构成模式开始受到了挑战。
第一次变革主要还是出于造型上的需要和建筑设计理念的变化,如70年代前后出现的“双核”构成模式。双侧外核心筒的布局,不仅有利于避难疏散,而且也使高层建筑的外观造型产生了巨大的变化。贝聿铭设计的新加坡“华侨银行中心”(OverseaChineseBankingCenter,1976)和日建设计设计的日本“IBM本社大楼”(IBMHeadofficeBuilding,1972)等等就是当年风行一时的双侧外核设计手法的代表。
第二次变革最先对核心筒提出革命性建议的是设备专业,他们认为随着建筑设备的日趋增多和越来越复杂,如果把设备用房和管道井从核心筒中分离出来,可能会更有利于管理和维修。而80年代以后,智能化建筑的普及和电信设施的不断增加,导致了在高层建筑中大
量应用计算机和电信通讯设备,甚至许多建筑在竣工之后,仍然频繁地改造布线系统和增添新设备。智能化办公楼中的光缆与电脑网络管道井、配线箱以及中继装置等,每层都必须设置三处以上才算合理。这样,建筑上为了满足机电设备经常变动的需要,便开始将“核”分散化,分置多处设备用房和管道井,以便于局部更改。
对于结构专业来说,加强建筑周边的刚度也会有效地抵抗地震对高层建筑的破坏,所以如果将垂直交通和设备用房等分散地布置在周边,则无疑也会对结构抗震有利。同时,这种分散的多个外核的空间构成模式,也正好适用于新兴的巨型框架结构(SuperFrame),使这种结构体系中的巨型支撑柱具有了使用功能。其最典型的实例就是丹下健三设计的日本“东京都新都厅”(NewTokyoCityHall,1991)。
而从建筑设计的角度来看,核的移动、垂直交通、服务性房间和管道井分散到建筑的周边,对于高层建筑的空间构成模式和立面造型上的变化也是极具革命性的。它不但适应了其它专业的需求,而且还有利于避难疏散,创造更大的使用空间和使高层建筑的底部获得解放。这种空间构成模式所具有的灵活性和先进性,很快便被推崇技术表现的欧洲建筑师们所发现,并创造性地应用在他们的作品之中。罗杰斯(R.Rogers)设计的英国“伦敦劳埃德大厦”(Llogd′sofLondon,1986)、88木街办公楼(88WoodStreet,LondonEC2,1999)和福斯特(N.Foster)设计的“香港汇丰银行”(NewHeadguartersfortheHongkongBank,1986)等等即是分散式核心筒的杰作,它们从内部的空间构成到外部立面,均与中央核心筒式的高层建筑大相经庭。
此处,在规模较小的高层建筑中,近年来还出现一种核与主要使用空间分离化的现象,垂直交通、服务性用房和设备管道井均分别独立,与建筑主体分开。主要使用空间更加完整,四面对外,核与主要使用空间之间以连廊相接。从结构的角度来看,核的刚度较大,而主体较柔,两部分各自分别工作,既受力合理又相对经济。当然,连接部分的设计是这类高层建筑设计的关键所在,不过这种设计方式给建筑外观带来的变化,已引起了建筑师们的观注,并很快在欧洲和日本流行起来。德国的汉诺威建筑博览会管理办公楼(VerwaltungsgebaudederDeutschenMesseAG,2000)、埃森RWE公司办公楼(RWEAGCorporateHeadguarters,1996),以及日本东京的东急南大井大楼(TokuMinami—01Building,1994)和大阪的凯恩斯本部办公楼(KeyenceCorporationHeadOffice&LAB,1994)就是核与主体相分离的极有特色的建筑实列。
核的分散和分离还可以使楼梯间、卫生间等直接对外自然采光通风,既节约能源,又省去消防所需的加压送风设备,更符合低能耗,可循环的现代设计原则。因此,近几年强调生态、节能的高层建筑多采用这种布局方式。马来西亚建筑师杨经文设计的高层建筑,不但楼梯、卫生间等全部对外,而且电梯筒壁还被刻意用来遮挡日晒,可谓“分散外核空间构成模式的生态设计方式”。“吉隆坡广场大厦”(PlazaAtrium,1986)及其最新设计的“新加坡展览大厦”(ExhibitionTower,1999)就都反映出这一设计特征。而另一位欧洲的建筑师赫尔佐格(T.Hetzag)设计的前述之德国汉诺威建筑博览会管理办公楼,也以其生态观念赢得了众口称赞。
●结论:
超高层住宅建筑由于要最大化满足居住舒适性的需求,同时还要兼顾节能、环保、易于维护的特点,核心筒设计需采用先进理念和工艺水平。分散核心筒设计理念相对较为符合超高层住宅的要求,但会存在一定程度的公摊面积。需通过多方案论证比较,找寻最优化方案。